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A B S T R A C T

In this paper, we propose a spatio-temporal contextual network, STC-Flow, for optical flow estimation. Unlike
previous optical flow estimation approaches with local pyramid feature extraction and multi-level correlation,
we propose a contextual relation exploration architecture by capturing rich long-range dependencies in spatial
and temporal dimensions. Specifically, STC-Flow contains three key context modules, i.e., pyramidal spatial
context module, temporal context correlation module and recurrent residual contextual upsampling module
for the effect of feature extraction, correlation, and flow reconstruction, respectively. Experimental results
demonstrate that the proposed scheme achieves the state-of-the-art performance of two-frame based methods
on Sintel and KITTI datasets.
. Introduction

Optical flow estimation is an important yet challenging problem in
he field of video analytics. Recently, deep learning based approaches
ave been extensively exploited to estimate optical flow via convo-
utional neural networks (CNNs). Despite the great efforts and rapid
evelopments, the advancements are not as significant as those in single
mage based computer vision tasks. The main reason is that optical flow
s not directly measurable in the wild, and it is challenging to model
otion dynamics with pixel-wise correspondence between two consec-
tive frames, which would contain variable motion displacements; thus
ptical flow estimation requires the efficient representation of features
o match objects or scenes of different motions.

Conventional methods propose mathematical algorithms of optical
low estimation such as EpicFlow [1] by matching features of two
rames. Most of these methods, however, are complicated with heavy
omputational complexity, and usually fail for motions with large
isplacements. CNN-based methods, which usually utilize encoder–
ecoder architectures with pyramidal feature extraction and flow re-
onstruction like FlowNet [2], SpyNet [3], PWC-Net [4], boost the
tate-of-the-art performance of optical flow estimation and outperform
onventional methods. However, the stacked convolutional layers they
tilize are limited of which the features in lower level contain rich de-
ails, while the corresponding receptive field of a single convolutional
ayer is small, which is not effective to catch the larger displacement
f motion. The features in higher level capture the overall outlines or
hapes of objects and can catch larger displacement with less details,
nd they may cause the misalignment for objects with complex shapes
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or non-rigid motions. So it is essential to capture context information
with large receptive field and long-range dependencies, and build the
global relationship for each level of CNNs, which could both catch
larger displacement and retain more details.

In this paper, as shown in Fig. 1, we propose an end-to-end archi-
tecture which jointly explores spatio-temporal context for optical flow
estimation. The network contains three key context modules. (a) Pyra-
midal spatial context module aims to enhance the discriminant ability of
feature representations in the spatial dimension. (b) Temporal context
correlation module is designed to model the global spatio-temporal
relationships of the cost volume calculated from correlation operation,
which is used to measure the effect of correspondence relationships.
(c) Recurrent residual context upsampling module leverages the underlying
content of predicted flow field between adjacent feature levels, to learn
high-frequency features and preserve edges within a large receptive
field.

In summary, the main contributions of this work are summarized
as:

• We propose a general framework, i.e. contextual attention frame-
work, for efficient feature representation learning, which ex-
plores the multiple level features and comprehensive operation
of feature fusion.

• We propose three corresponding context modules in the con-
textual attention framework, for feature extraction, correlation
and optical flow reconstruction, aiming at improving the overall
performance via better feature representation and correlation and
enhancing high-frequency details with context information.
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Fig. 1. Overview of spatio-temporal contextual network for optical flow estimation.
The context modules aim to build the relationship in spatial and temporal dimensions.
With multiple context modeling, STC-Flow achieves the better performance with rich
details.

2. Related work

Optical flow estimation. Horn and Schunck [5] pioneer the study on
optical flow estimation, of which method takes advantage of illumi-
nation changes, and uses an iterative implementation. Brox et al. [6]
propose a warping-based optical flow prediction method. Brox et al. [7]
use rich descriptors for feature matching to estimate a dense opti-
cal flow field with large displacement. Zimmer et al. [8] propose
the anisotropic smoothness as the constraint term for data regular-
ization. Weinzaepfel et al. [9] propose DeepFlow to correlate multi-
scale patches to retrieve quasi-dense correspondences efficiently. Tu
et al. [10] present a combined post-filtering with a 3D nonlinear
structure tensor based edge detector to identify edges and a piece-
wise occlusion detector to detect flow occlusion. Revaud et al. [1]
propose EpicFlow that uses dense matching via the interpolation of a
sparse set of matches between the two consecutive images to obtain
dense flow. Tu et al. [11] propose a weighted local intensity fusion
method to fuse optical flow proposals to handle large displacements
and estimate the smoothness parameter. Tu et al. [12] propose an
energy function with edge-aware constraints integrated image fidelity
term for jointly optical flow estimation and image restoration. Chen
et al. [13] use TV-wavelet regularization for lost optical flow infor-
mation. Inspired by the success of CNNs, many deep networks for
optical flow estimation have been proposed. Dosovitskiy et al. [2]
propose FlowNetS and FlowNetC networks with the encoder–decoder
architecture design for optical flow estimation. However, the number
of parameters is quite large, which results in heavy computation cost.
Ilg et al. [14] propose a cascaded network, i.e. FlowNet2, with better
performance with huge number parameters and expensive computation
complexity. Some methods use CNN models for image patches match-
ing. Thewlis et al. [15] utilize Deep Matching formulation into a CNN
for end-to-end training. Gadot [16] and Bailer et al. [17] use patch
matching for Siamese network architectures with heavy computation
cost. Deep DiscreteFlow [18] utilizes a local network and a context
network for optical flow estimation. Chen et al. [19] propose a coarse-
to-fine segmentation-based PatchMatch with sparse seeds for optical
flow estimation. Moreover, patch matching based methods lack the
capacity to explore larger context of the image because of the small
image patch based operator. PatchFlow [20] introduces a patch-based
consistency for unsupervised optical flow and occlusion estimation. In
addition, many unsupervised methods are proposed to estimate optical

flow. Wang et al. [21] propose a unified framework for unsupervised
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learning of optical flow and design a rigid-aware direct visual odometry
module to handle rigid regions. DDFlow [22] utilizes data distillation
from the teacher network to guide a student network to learn the flow
field.

To reduce the number of parameters, Ranjan et al. [3] present a
compact SPyNet for spatial pyramid with multi-level representation
learning, which is utilized with a light architecture of feature-level
matching and warping motivated by conventional methods. Never-
theless, the performance is not significant. Hui et al. [23] propose
LiteFlowNet and Sun et al. [4] propose PWC-Net, which explore the
lightweight optical flow prediction networks. LiteFlowNet [23] uses
the flow inference of a cascaded network for flow warping and feature
matching. PWC-Net [4] uses feature pyramid extraction in the back-
bone network, and warp the feature at each level to construct the cost
volume. Hierarchical Discrete Distribution Decomposition (HD3) [24]
decomposes the full match density into hierarchical features to esti-
mate the local matching, with high computational complexity. Iterative
Residual Refinement (IRR) [25] involves the iterative residual refine-
ment, and integrates occlusion prediction as an additional auxiliary
supervision. SelFlow [26] uses reliable flow predictions from non-
occluded pixels, to compensate optical flow for invisible occlusions. Bao
et al. [27] introduce Kalman filtering into CNN-based methods to im-
prove the robustness against the change of illumination and occlusion.
Chen et al. [28] adopt different filtering operations for regularization
with respect to consistency. MaskFlownet [29] filters useless areas by
a learned rough occlusion mask. ScopeFlow [30] modifies the common
training protocols by cropping randomly sized scene scopes to enhance
the performance. Instead of coarse-to-fine manner, RAFT [31] operates
on a single high-resolution flow field, with a recurrent and lightweight
update operator for iterative refinement. Inspired by these works, we
use lightweight pyramid networks to accelerate the calculation process
and introduce additional spatial and temporal information interaction
to improve accuracy.
Bio-inspired motion estimation. Bio-inspired motion
estimation [32–36] allows to explain and understand human behav-
ior on optical flow, which estimates motion along the visual dorsal
pathway in primates. Pauwels et al. [32] emulate large parts of the
dorsal stream in an abstract way and implement an architecture with
optical flow feature extraction stages, which are used to reliably extract
moving objects in real time. Kruger et al. [33] propose functional
principles of deep hierarchical processing in the primate visual system.
Tschechne et al. [34] propose a simplified version of initial stages
of cortical processing combines filters with spatio-temporal tunings
to represent movements along the dorsal pathway. Chessa et al. [35]
propose a neural feed-forward model that mimic the V1–MT primary
motion pathway, to yield a population of pattern cells that encodes
the local velocities of the visual stimuli. Solari et al. [36] propose a
computational model which uses hierarchical cells’ layers that model
the neural processing stages of the dorsal visual pathway, and produces
selectivity for specific patterns of optical flow.
Context modeling in neural networks. Context modeling has been
successfully applied to capture long-range dependencies. Since a typ-
ical convolution operator has a local receptive field, context learning
can affect an individual element by aggregating information from all
elements. Many recent works utilize spatial self-attention to emphasize
features of the key local regions. Object relation module [37] extends
original attention to geometric relationship, which could be used to im-
prove the performance of object detection and other tasks. DANet [38]
introduces the channel-wise attention via self-attention mechanism.
Global context network [39] effectively models the global context with
a lightweight architecture. Non-local network [40] uses 3D convolution
layers to aggregate spatial and temporal long-range dependencies for
video frames.

In the optical flow estimation task, spatial contextual information
helps to refine details and deal with occlusion. PWC-Net [4] consists

of the context network with stacked dilated convolution layers for
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Fig. 2. Overall architecture of our proposed spatio-temporal contextual network for optical flow estimation (STC-Flow), which builds the contextual information in spatial and
temporal dimensions. Pyramidal spatial context (PSC), temporal context correlation (TCC), and recurrent residual contextual upsampling (RRCU) modules are flexible to adopt to
model spatial and temporal relationships of intra-/extra-features in each level, which improve the overall performance and preserve details for optical flow. We only show these
modules at the top two levels.
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flow post-processing. In LiteFlowNet [23], flow regularization layer is
applied to ameliorate the problem of outliers and fake edges. IRR [25]
uses bilateral filters to refine blurry flow and occlusion. Mei et al. [41]
exploit weighted regularization of the unequal probability with non-
local information, to estimate stable optical flow despite illumination
changes. Zhai et al. [42] integrate local features with their global
dependencies and focus on important features and suppress unimpor-
tant spatial features. Young et al. [43] propose a robust optical flow
estimation method based on Gaussian graph Laplacians. Nevertheless,
previous work of context modeling in optical flow estimation mainly
focuses on spatial representation. For motion context modeling, it is
essential to provide an elegant framework to explore both spatial and
temporal information. In this work, we introduces spatial and temporal
context module to efficiently explore the global spatial and temporal
contexts.

3. STC-Flow

Given a pair of video frames, scene or objects are diverse on
movement velocity and direction. They change in scales, views, and
luminance. Convolutional operations in CNNs are in general performed
just in a local neighborhood. The pixels of the same non-rigid object
may have similar textures and features, even though they may have
different motions. For instance, (1) The objects are non-rigid with
different obvious motion situation of each part, such as the girl walking
in the street and the dragon flying through the path in Sintel dataset,
and (2) The objects are near the boundaries of the view, and the motion
intensity is different with the camera moving, such as the trees and
railings on both sides of the road in KITTI dataset. These would result in
false-positive correlation and thus wrong prediction of optical flow, and
it is essential to utilize the global contextual corresponding modules for
modeling objects/scenes.

To address this issue, our method of STC-Flow models contextual
information by building global associations of features with the self-
attention mechanism in spatial and temporal dimensions, respectively.
The network adaptively aggregates long-range contextual information
for optimizing feature representation in feature extraction, correlation,
and reconstruction stages, as shown in Fig. 2. In this section, we first
introduce the contextual attention framework with single or multi-
ple inputs for efficient feature representation learning. Based on this
framework, we propose three key contextual modules: pyramidal spatial
context (PSC) module, temporal context correlation (TCC) module, and
recurrent residual contextual upsampling (RRCU) module for modeling
contextual information.
 p

3

3.1. Contextual attention framework

Analysis on Attention Mechanism. To capture long-range dependen-
cies and model contextual details for single images or video clips,
the non-local network [40] aggregates pixel-wise information via self-
attention mechanism. We denote 𝑋 and 𝑍 as the input and output
signals. The non-local block can be modeled as:

𝑍𝑖 = 𝑋𝑖 +𝛷𝑧
∑

𝑗

𝑓 (𝑋𝑖, 𝑋𝑗 )
 (𝑋)

(𝛷𝑣𝑋𝑗 ), (1)

where 𝑖 and 𝑗 are the indices of feature positions. 𝑓 (𝑋𝑖, 𝑋𝑗 ) denotes
he affinity between features of positions 𝑖 and 𝑗, and we normalize
hem by a factor  (𝑋). The matrix multiplication operation is used
o strengthen details of each query position. Embedded Gaussian is

widely-used instantiation of 𝑓 (𝑋𝑖, 𝑋𝑗 ), to compute similarity in an
mbedding space. The non-local block with Embedded Gaussian is
odeled as follows:

𝑖 = 𝑋𝑖 +𝛷𝑧
∑

𝑗

exp((𝛷𝑞𝑋𝑖)⊤(𝛷𝑘𝑋𝑗 ))
∑

𝑚 exp((𝛷𝑞𝑋𝑖)⊤(𝛷𝑘𝑋𝑚))
(𝛷𝑣𝑋𝑗 ), (2)

where 𝛷𝑞 , 𝛷𝑘 and 𝛷𝑣 are linear transformation matrices.
Why attention for optical flow estimation? Here, we discuss the
relation between correlation in optical flow estimation and matrix
multiplication in self-attention mechanism. We aim to explore the
contextual information from the input feature nodes. We denote the
two feature maps by 𝐹1 and 𝐹2. We denote the size of features with
eight 𝐻1 and 𝐻2, width 𝑊1 and 𝑊2, channel 𝐶1 and 𝐶2, and position
oordinate 𝐱1 ∈ [1,𝐻1]×[1,𝑊1] and 𝐱2 ∈ [1,𝐻2]×[1,𝑊2], channel index
1 ∈ 𝐶1 and 𝑐2 ∈ 𝐶2, and here 𝐻1 = 𝐻2, 𝑊1 = 𝑊2 and 𝐶1 = 𝐶2.

As the key operation in optical flow estimation, the ‘‘correlation’’
peration between two patches, 𝐟1 and 𝐟2, from 𝐹1 and 𝐹2 respectively,
s defined as:
𝐶𝑜𝑟𝑟(𝐟1, 𝐟2) =

∑

𝐨
⟨𝐟1(𝐱1 + 𝐨), 𝐟2(𝐱2 + 𝐨)⟩, (3)

here 𝐶𝑜𝑟𝑟(𝐟1, 𝐟2) denotes the cost volume calculated via correlation.
∈ [−𝑛, 𝑛] × [−𝑛, 𝑛] denotes the offset of correlation operation with

earch region. In consideration of matrix multiplication in the attention
echanism of 𝑓 (𝑋𝑖, 𝑋𝑗 ), the different order of the two matrices (𝑋𝑖 and
𝑗) in multiplication leads to great disparity of correlation, and thus

auses the disparity of the direction of optical flow.
The expression is defined as 𝐹2(𝐱2, 𝑐2)(𝐹1(𝐱1, 𝑐1))⊤ ∈ R𝐻2𝑊2×𝐻1𝑊1 ,

hich is shown in Fig. 4(a). If 𝐹1 = 𝐹2, this operation strengthens
he detail representation of each position via aggregating information
cross channels from other positions, which would indicate the spatial
ttention integration at full resolution. However, if 𝐹1 ≠ 𝐹2, as the
nputs of correlation operation, different elements present the corre-
ation with different displacements, and only the diagonal elements
resent no displacement. On the contrary, the expression is defined as



X. Song, Y. Zhao and J. Yang Signal Processing: Image Communication 99 (2021) 116441

p
c

(
r
n
m
c
w
c
C
l
b
f
c

Fig. 3. The contextual attention framework (a) with modularization; and the specified forms of (b) the non-local block [40], and (c) global context (GC) block [39].
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Fig. 4. The matrix multiplication with different contextual information. (a) The

osition-wise attention embedding; (b) the channel-wise embedding, also the global
orrelation of feature pairs.

𝐹1(𝐱1, 𝑐1))⊤𝐹2(𝐱2, 𝑐2) ∈ R𝐶1×𝐶2 in Fig. 4(b), which is a global correlation
epresentation at full resolution among channels, and is essential to the
aive correlation operation between feature pairs. For different matrix
ultiplication approaches, the attention maps catch dependencies with

orresponding concepts in spatial features and temporal dynamics,
hich enhance the representation feature extraction and correlation

alculation, respectively.
ontextual Attention Framework. In general, the input of CNNs is not

imited to the single feature through the single path, and the attention
lock needs to be adapted to more than one inputs, e.g. two input
eature maps of the correlation operation. As shown in Fig. 3(a), the
omponents of the attention block can be abstracted as follows:

• Attention aggregation. To aggregate the attention integration fea-
tures to the intrinsic feature representation in each correspond-
ing dimension, where the intrinsic representation often adopts
4

basic operators like interpolation, convolution and transposed
convolution.

• Context transformation. To transform the aggregated attention
via the multi-layer perceptron (MLP) with 1 × 1 convolution,
and obtain the contextual attention features of all positions and
channels.

• Target fusion. To aggregate the output feature from target opera-
tion with the contextual attention, where the target operation is
the main function to attain the objective from input features.

enote 𝑋(𝑘) as the multiple input features. We regard this abstraction
s a contextual attention framework defined as follows:

𝑍 = 

(

𝑇
(

𝑋(𝑘)) ,

(

𝐴
(

𝑋(𝑘)) ,
∑

𝑘
𝜙𝑘𝑋

(𝑘)

))

, (4)

where  (⋅) and (⋅) are the fusion operations for attention aggregation
nd target fusion. 𝑇 (⋅) and 𝐴(⋅) denote target operation and attention
ntegration for the input features, 𝜙 is the factor of linear transfor-
ation. The non-local block or the other attention modules are the

pecific form of context attention block with the single input feature,
.g. 𝐴𝑖𝑗 (𝑋) = 𝑓 (𝑋𝑖, 𝑋𝑗 )∕ (𝑋), and 𝑇 (𝑋) is the all-pass function in the

non-local block.
Lite matrix multiplication. Considering the runtime of the flow predic-
tion, the matrix multiplication in contextual attention block needs to
be simplified with less computational complexity. In Fig. 5, according
to the neighbor similarity of images or frame pairs, we propose the
polyphase decomposition and reconstruction scheme to simplify matrix
multiplication operation, which would obtain better approximation
than the naive downsampling–upsampling scheme, and reduce the
computation complexity compared to the conventional matrix multi-
plication. Denote the polyphase decomposition factor as 𝑠 (𝑠 > 1).
Polyphase decomposition separates elements in one 𝑠 × 𝑠 area, and
divides the original matrix into 𝑠2 small matrices. Each small matrix
contains 𝑅

𝑠 rows and 𝐶
𝑠 columns, where 𝑅 and 𝐶 is the number of rows

and columns in the original matrix. After decomposition, each small
matrix multiplies the corresponding decomposed part. In polyphase
reconstruction stage, all elements in small matrices gather together in
the location of the original matrix to compose the target matrix. Given
a reshaped feature 𝐹 ∈ R𝑀×𝑁 , the FLOPs of the entire multiplication
is reduced from 𝑂

(

𝑁𝑀2) to 𝑂
(

𝑁𝑀2

𝑠

)

. The comparison of different
factors is presented in Section 4.
Fig. 5. The proposed simplified matrix multiplication with polyphase decomposition and reconstruction.
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3.2. Pyramidal spatial context module

Inspired by the non-local network and global context network, we
propose a pyramidal spatial context module with a tight dual-attention
block to enhance the discriminative ability of feature representations
in spatial position and channel dimensions. As shown in Fig. 6, given
a local feature 𝐹 (𝑘) ∈ R𝐶×𝐻×𝑊 at level 𝑘, attention information is
calculated by inner product and non-linear operations, which aggregate
long-range correlated information. We combine the attention informa-
tion with local feature to obtain position-wise context and channel-wise
context, which are added back to local feature to improve feature rep-
resentation. The calculation of the spatial context module is formulated
as:

𝐹 (𝑘) = 𝐹 (𝑘) + 𝐶 (𝑘)
𝑃 + 𝐶 (𝑘)

𝐶 , (5)

where 𝐶 (𝑘)
𝑃 and 𝐶 (𝑘)

𝐶 are contextual attention at level 𝑘 fused with that
of level 𝑘− 1, which is to aggregate context from different granularity:

𝐶 (𝑘)
𝑃 = 𝛷(𝑘)

𝑧

[

∑

𝑗
𝐴(𝑘)
𝑃 ,𝑖𝑗𝐹

(𝑘)
𝑗 , 𝐶 (𝑘−1)

𝑃 ⇓

]

,

𝐶 (𝑘)
𝐶 = 𝛷(𝑘)

𝑧

[

∑

𝑗
𝐴(𝑘)
𝐶,𝑖𝑗𝐹

(𝑘)
𝑗 , 𝐶 (𝑘−1)

𝐶

]

,

(6)

where ‘‘⇓’’ denotes max-pooling, and ‘‘[⋅]’’ denotes the concatenation
operator. 𝐴𝑃 ,𝑖𝑗 and 𝐴𝐶,𝑖𝑗 are attention integrations in position and
channel, defined as follows to learn the spatial and channel interde-
pendencies:

𝐴𝑃 ,𝑖𝑗 (𝐹 ) =
exp((𝛷𝑞𝐹𝑖)⊤(𝛷𝑘𝐹𝑗 ))

∑

𝑚 exp((𝛷𝑞𝐹𝑖)⊤(𝛷𝑘𝐹𝑚))
∈ R𝐻𝑊 ×𝐻𝑊 ,

𝐴𝐶,𝑖𝑗 (𝐹 ) =
exp(𝛷𝑘𝐹𝑗 )

∑

𝑚 exp(𝛷𝑘𝐹𝑚)
∈ R𝐻𝑊 ×1.

(7)

.3. Temporal context correlation module

After the spatial context module learns query-independent context
elationships at the feature extraction stage, the temporal context mod-
le is adopted to model the relationships of correlation. As the analysis
n matrix multiplication, correlation with long-range dependencies is
sed to describe the global context of correlation operation. As shown
n Fig. 7(a), given the local feature pairs 𝐹1, 𝐹2 ∈ R𝐶×𝐻×𝑊 from feature
xtraction, the contextual correlation is formulated as:

𝑍𝑖 = 𝛷𝑐𝐶𝑜𝑟𝑟𝑖(𝐹1, 𝐹2) +𝛷𝑧
∑

𝑗

(

𝐴𝑇 ,𝑖𝑗 ⋅𝛷𝑣(𝐹1, 𝐹2)
)

, (8)

here 𝐴𝑇 ,𝑖𝑗 is the temporal attention integration with the cross-attention
echanism, which is defined as follows:

𝐴𝑇 ,𝑖𝑗
(

𝐹1, 𝐹2
)

=
exp((𝛷𝑞𝐹1,𝑖)⊤(𝛷𝑘𝐹2,𝑗 ))

∑

𝑚 exp((𝛷𝑞𝐹1,𝑖)⊤(𝛷𝑘𝐹2,𝑚))
∈ R𝐶×𝐶 . (9)

Notice that the linear transformation of 𝛷𝑣(𝐹1, 𝐹2) is modeled by a
3D convolution and a 1 × 1 convolution, which aims to explore the tem-
poral information across time dimension. Since the max displacement
of correlation is selected to 4, the kernel of 3D convolution needs to
cover all frames in the temporal dimension, and the height and width
are larger than or equal to the max displacement, i.e. 5 in the proposed
module. In addition, ‘‘CN’’ in TCC denotes ‘‘Channel Normalization’’.
Denote the input feature by 𝐹 ∈ R𝐶×𝐻×𝑊 , the formulation of CN is
expressed as follows:

𝐶𝑁(𝐱, 𝑐) = 𝐹 (𝐱, 𝑐)
/(

𝛼
∑

𝐱
(𝐹 (𝐱, 𝑐))2 + 𝜖

)𝛽

, (10)

where 𝐱 ∈ [1,𝐻] × [1,𝑊 ] and 𝑐 ∈ [1, 𝐶] denote the position and
the channel of 𝐹 , respectively. 𝛼, 𝛽 and 𝜖 denote the multiplier, the
exponent and the additive constant with a small value for normalization
5

term, respectively. This normalization aims to indicate the relative
value in each channel.

The TCC module is a flexible correlation operator and it can be
used in PWC-Net [4] as ‘‘Contextual PWC’’ module, to learn long-
dependencies between the reference features and the warped features.

3.4. Recurrent residual contextual upsampling

Different from the spatial and temporal context representation mod-
eling, the reconstruction context learning is a detail-aware operation
to learn high-frequency feature and to preserve edges with a large
receptive field. In view of the multi-level structure of reconstruction, we
propose an efficient recurrent module for upsampling, which leverages
the underlying content information between the current level and the
previous level.

In general, RRCU module aims at upsampling predicted flow at cur-
rent level with the information compensation from the previous level.
The predicted optical flow 𝑌 (𝑘) at level 𝑘 and the upsampled optical
flow 𝑌 (𝑘+1) obtained from RRCU module at level 𝑘 + 1 are encoded
by 1 × 1 convolution. Denote the residual between 𝑌 (𝑘) and 𝑌 (𝑘+1) as
(𝑘) = 𝑌 (𝑘)

𝑖 − 𝑌 (𝑘+1)
𝑖 , and then the context modeling is utilized for 𝑅(𝑘)

o explore the up-sampling attention kernels 𝐴𝑈 in each corresponding
ource position, and 𝐴𝑈 is fused back to the bilinear interpolated 𝑅(𝑘).

Finally, the fined residual feature �̃�(𝑘) is resembled to 𝑌 (𝑘) to obtain
he refined upsampled flow 𝑌 (𝑘) with rich details. The architecture is

illustrated in Fig. 8, and the formulation is expressed as follows:

𝑌 (𝑘)
𝑖 = 𝑑𝑒𝑐𝑜𝑛𝑣(𝑌 (𝑘)

𝑖 ) +𝛷𝑧
∑

𝑖

(

𝐴𝑈,𝑖 ∗ 𝛷𝑣𝑅
(𝑘)
𝑖

)

, (11)

here ‘‘*’’ denotes the position-wise convolution operator, and here 𝑊𝑣
s a bilinear interpolation operator for 𝑅(𝑘). 𝐴𝑈,𝑖𝑗 denotes the adaptive
ttention kernels to model the detail context defined as follows:

𝐴𝑈,𝑖 (𝑅) =
exp(𝑝𝑠(𝛷𝑟𝑅𝑖))

∑

𝑚 exp(𝑝𝑠(𝛷𝑟𝑅𝑚))
∈ R𝜎2×𝐻×𝑊 , (12)

where 𝑝𝑠 denotes the ‘‘Pixel Shuffle [44]’’ operator for sub-pixel con-
volution, which is a periodic shuffling operator that rearranges the
elements of a 𝐻 ×𝑊 ×𝐶 ⋅ 𝜎2 tensor to a tensor of shape 𝜎𝐻 × 𝜎𝑊 ×𝐶.
Pixel Shuffle reconstructs the sub-pixel information to preserve edges
and textures. 𝜎 is the upsampling factor, and here 𝜎 = 2.

3.5. Overall architecture

Given the proposed contextual attention modules, we now describe
the overall architecture of the proposed STC-Flow. The input is the
frame pairs 𝐼1 and 𝐼2 with size 3 × 𝐻 × 𝑊 , and the goal of STC-
Flow is to obtain the optical flow map 𝑌 with size 2 × 𝐻 × 𝑊 . The
contextual representations are modeled via three key components —
pyramidal spatial context (PSC) module, temporal context correlation
(TCC) module, and recurrent residual contextual upsampling (RRCU)
module, to capture long-range dependencies relationship in feature
extraction, correlation and flow reconstruction, respectively. The entire
network is trained jointly, shown in Fig. 2.

Since PWC-Net [4] and LiteFlowNet [23] provide superior perfor-
mance with lightweight architectures, we take a simplified version of
PWC-Net, with layer reduction in feature extraction and reconstruction,
as the baseline of our STC-Flow. For successive image/frame pairs,
the backbone network with PSC outputs pyramidal feature maps for
each image. With the feature maps of each level converted to cost
volumes via correlation operation, the cost volumes are decoded and
reconstructed to optical flow by TCC. With the guidance of backbone
features and warping alignments, the predicted flow field goes through
the RRCU module and the fined flow is obtained.
Training Loss. Considering the semi-dense ground truth of the KITTI
benchmark, we propose a novel multi-scale loss function, i.e., pyramid
mask-invariant loss, to retain valid flow values and masks at different
levels as shown in Fig. 9. We denote 𝛩 as the learnable parameters
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Fig. 6. The pyramidal spatial context (PSC) module. (a) The framework of PSC in the network; (b) The details of ‘‘Pyramidal Spatial Context Modeling’’ in (a).
Fig. 7. The temporal context correlation (TCC) module. (a) The details of TCC module; (b) The Contextual PWC Module utilized with TCC in (a). ‘‘MD’’ is the max displacement
of correlation. The temporal successive representation utilizes 3D convolution with kernel size 𝑇 × 5 × 5, and 𝑇 is the frame number of input, i.e. 2.
of our network. 𝑌 (𝑘) and 𝑌 (𝑘)
𝐺𝑇 denote the predicted optical flow at the

𝑘th level and the corresponding ground truth flow, respectively. The
ground truth in different resolution 𝑌 (𝑘)

𝐺𝑇 is obtained through average
pooling. However, the value of the ground truth would be erroneous
if the ground truth is semi-dense. Therefore, we use the same average
pooling operation on the mask, denoted as 𝑀 (𝑘)

𝑎𝑣𝑔 , with the same reso-
lution of 𝑌 (𝑘)

𝐺𝑇 , as the factor to rectify the deviation of average-pooled
label. And 𝑌 (𝑘)

𝐺𝑇 ∕𝑀
(𝑘)
𝑎𝑣𝑔 is restored as the label at level 𝑘. In addition, the

corresponding mask at level 𝑘 is generated from full-resolution mask
via max pooling operation, denoted as 𝑀 (𝑘)

𝑚𝑎𝑥. According to the general
Charbonnier function, the proposed pyramid mask-invariant loss is as
follows:

(𝛩) =
∑

𝛼𝑘
∑

(

|𝑌 (𝑘)(𝐱) − 𝑌 (𝑘)
𝐺𝑇 (𝐱)∕𝑀

(𝑘)
𝑎𝑣𝑔| ⋅𝑀

(𝑘)
𝑚𝑎𝑥 + 𝜖

)𝑞
+ 𝛾|𝛩|2, (13)
𝑘 𝐱

6

where | ⋅ | denotes the L1 norm, and 𝑞 gives the penalty of the difference
between the label and predicted flow and 𝑞 < 1. 𝜖 is a small positive
constant. Specially, for fully-dense datasets, such as Sintel, each mask
is an all-one matrix with the same height and width of input frames.

4. Experiments

In this section, we introduce the implementation details, and eval-
uate our method on public optical flow benchmarks, including MPI
Sintel [45], KITTI 2012 [46] and KITTI 2015 [47], and compare it with

state-of-the-art methods.
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Fig. 8. The recurrent residual contextual upsampling (RRCU) module. (a) The framework of RRCU in the network, with the Contextual PWC module in Fig. 7; (b) The details of
‘‘Recurrent Residual Context Modeling’’ in (a).
Table 1
Ablation study of our component choices of the network. Average end-point error (AEE) and percentage
of erroneous pixels (Fl-all) Results of our STC-Flow with different components of PSC, TCC and RRCU on
Sintel training Clean and Final passes, and KITTI 2012/2015.

(a) Pyramidal Spatial Context Module improves quantity results significantly.
‘‘w/PSC3−5 ’’ means ‘‘using PSC in level 3, 4 and 5’’

Methods Sintel KITTI 2012 KITTI 2015

Clean Final AEE AEE Fl-all

Baseline 2.924 4.088 4.621 11.743 36.53%
w/PSC3 2.802 3.891 4.565 11.031 35.37%
w/PSC3−4 2.747 3.873 4.545 10.677 34.84%
w/PSC3−5 2.741 3.864 4.494 10.332 34.45%
w/2D-NL3−5 2.785 3.968 4.523 10.482 34.76%
Full model 2.412 3.601 4.196 10.181 32.23%

(b) Temporal Context Correlation Module is critical and outperforms single correlation
module.

Methods Sintel KITTI 2012 KITTI 2015

Clean Final AEE AEE Fl-all

Baseline 2.924 4.088 4.621 11.743 36.53%
w/TCC6 2.787 3.863 4.523 10.712 35.59%
w/TCC3−6 2.641 3.780 4.389 10.313 34.58%
w/2D-NL3−6 2.764 3.869 4.498 10.564 35.25%
w/3D-NL3−6 2.635 3.745 4.393 10.324 34.63%
Full model 2.412 3.601 4.196 10.181 32.23%

(c) Recurrent Residual Context Upsampling has better performance.

Methods Sintel KITTI 2012 KITTI 2015

Clean Final AEE AEE Fl-all

Baseline 2.924 4.088 4.621 11.743 36.53%
w/RRCU 2.696 3.794 4.432 10.332 34.65%
TCC+RRCU 2.567 3.722 4.368 10.295 33.89%
Full model 2.412 3.601 4.196 10.181 32.23%
4.1. Implementation and training details

We take a simplified version of PWC-Net as the baseline, with the
same number of levels. Since the PSC Module has great effect of feature
representation and the RRCU Module improves the reconstruction sig-
nificantly, we reduce the layers in feature extraction and reconstruction
in PWC-Net and utilize PSC, TCC and RRCU to construct our network.
PSC Module and RRCU Module are used at level 3, 4 and 5 for feature
extraction and reconstruction respectively. TCC Module is applied at
7

level 3, 4, 5 and 6 for correlation of feature pairs or warped features.
The training loss weights among levels are 0.32, 0.08, 0.02, 0.01, 0.005.
We first train the models with the FlyingChairs dataset [2] with L2
loss and the 𝑆𝑙𝑜𝑛𝑔 learning rate schedule, with augmentation scheme
of random flipping and cropping of size 448 × 384 introduced by [14].
Secondly, we fine-tune the models on the FlyingThings3D dataset [48]
using the 𝑆𝑓𝑖𝑛𝑒 schedule with cropping size of 768 × 384. Finally, the
model is fine-tuned on Sintel and KITTI datasets using the proposed
pyramid mask-invariant loss as the robust training loss. We use both the
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lean and final pass of the training data throughout Sintel fine-tuning
rocess, with cropping size of 768 × 384; and we use the mixed data
f KITTI 2012 and 2015 training for KITTI fine-tuning process, with
ropping size of 896 × 320.

.2. Ablation study

To demonstrate the effectiveness of individual contextual attention
odule in our network, as shown in Table 1 and Fig. 10, we conduct

n ablation study of PSC, TCC, and RRCU, respectively. From Table 1,
e observe that these three modules improve the performance clearly,

hanks to the capturation of the semantic information with long-range
ependencies. The baseline is trained on FlyingChairs and finetuned on
lyingThings3D. We also discuss the efficacy of Lite matrix multiplier
n Table 2.
yramidal spatial context module. STC-Flow uses PSC Module at

evel 3, 4 and 5. Table 1(a) demonstrates that using PSC Module can
mprove the performance on both Sintel and KITTI datasets, since this
odule enhances the ability of discriminating feature texture in feature

xtraction stage, and PSC at level 3 is more beneficial, for the low-level
iscriminative details matter.
emporal context correlation module. TCC Module describes the
elationship of correlation with the spatial and temporal context. In
able 1(b), we compare the performance of our network using TCC
odule with naive correlation operator, and also compare with 2D non-

ocal block for concatenated feature and 3D non-local block for feature
airs. It demonstrates that fusion of correlation with spatial and tem-
oral context is better than single correlation. Notice that 3D non-local
locks perform better in Sintel, however, with heavy computational
omplexity. TCC can achieve the comparable performance with fewer
LOPs.
ecurrent residual contextual upsampling. We use the RRCU Mod-
le to learn high-frequency context features and preserve edges. In
able 1(c), we compare the quantity of our method using RRCU with
ingle transpose convolutional layers, which demonstrates that recon-
truction context learning could preserve details and improve perfor-
ance.
ite matrix multiplication. Lite matrix multiplication is an efficient
cheme to reduce the computational complexity. We compare the per-
ormance of this scheme with different polyphase decomposition factor
on Sintel training. As shown in Table 2, lite matrix multiplication has
margin influence on AEE, but increases the frame rate conspicuously.
ig. 11 shows the visualization of feature maps at level 3 with the
roposed lite matrix multiplication of different polyphase decompo-
ition factors. These features are normalized by the same value for
isualization. We can see that the feature of polyphase decomposition
actor 𝑠 = 2 is more similar to that of 𝑠 = 1 (𝑠 = 1 means the naive
atrix multiplication), while the feature of 𝑠 = 4 is a bit different from
8

able 2
etailed results of lite matrix multiplication with different polyphase decomposition

actor 𝑠 on Sintel training clean and final pass dataset on AEE and frame rate,
nd structural similarity index (SSIM) of context features in level 4 between lite
ultiplication and naive multiplication. (Inference on Intel Core i5 CPU and NVIDIA
EFORCE 1080 Ti GPU for the frame rate.)
𝑠 AEE/SSIM (Clean) AEE/SSIM (Final) Runtime (fps)

1 2.407/— 3.588/— 20
2 2.412/0.9765 3.601/0.9982 22
4 2.515/0.9061 3.856/0.8990 25

the naive matrix multiplication. Considering the feature representation
in Fig. 11 and the tradeoff between accuracy and time consumption in
Table 2, we select 𝑠 = 2 for the full model.

4.3. Comparison with state-of-the-art methods

As shown in Table 3, compared with state-of-the-art methods, we
achieve the comparable quantity results in Sintel and KITTI datasets.
Some samples of visualization results are shown in Fig. 12. STC-Flow
performs better on AEE among the methods on Sintel Clean and Final
passes, with the decrease of [3.12, 3.49], [0.64, 0.87], [1.02, 0.51] and
[0.87, 0.17] compared with SpyNet, FlowNet2, LiteFlowNet and PWC-
Net, respectively, and on KITTI 2012/2015 datasets with the decrease
of [2.6, 27.08%], [0.3, 3.49%], [0.1, 1.39%] and [0.2, 1.61%], respec-
tively. We can see that the finer details are well preserved via context
modeling of spatial and temporal long-range relationships, with fewer
artifacts and lower end-point error. In addition, our method is based on
only two frames without additional information (like occlusion maps
for IRR [25] and additional datasets) used, but it outperforms state-
of-the-art multi-frames methods, e.g. SelFlow [26]. In addition, Fig. 13
shows the tradeoff chart between accuracy, i.e., average end-point error
(AEE) in Sintel test Clean pass and the number of CNN parameters.
STC-Flow reaches the best balance between accuracy and network size
among CNN models for optical flow estimation. Specifically, STC-Flow
is lightweight with far fewer parameters, i.e. 9M instead of 163M of
FlowNet2 [14] and 40M of HD3 [24]. We believe that our flexible
scheme is helpful to achieve better performance for other baseline
networks, including multi-frame based methods.

In addition, our method would compromise its performance when
the network is trained using FlyingChairs and FlyingThings3D datasets,
such as FlowNet2 for Sintel, and EpicFlow for KITTI. FlowNet2 is
a large network architecture with a greater number of parameters
(160M) than ours (9M), containing several sub-networks (FlowNetC,
FlowNetS, and etc.). For the Sintel dataset, FlowNet2 model has higher
fitting capability of the small and moderate displacements. For KITTI

datasets, patch-matching based methods, like EpicFlow and PatchFlow,
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i

Fig. 10. Results of ablation study on Sintel training Clean and Final passes. We also indicate the learned features on corresponding modules — PSC and RRCU in level 4 and TCC
n level 6. (Zoom in for details.)
Fig. 11. Comparison of feature visualization at level 3 with different polyphase decomposition factors of lite matrix multiplication.
are suitable to handle the large displacements. Moreover, parame-

ters of EpicFlow and DeepFlow are optimized on the training set,

and thus the performance would be better. Occlusion branch is used
9

to train PatchFlow, which estimates the occlusion mask for the ex-
plicit auxiliary of optical flow estimation. However, since the potential
contextual modeling, our performance is better when the network is
finetuned using corresponding training datasets. Specifically, IRR [25],
Table 3
AEE and Fl-all of different methods on Sintel and KITTI . The ‘‘-ft’’ suffix denotes the fine-tuned networks using the target dataset. The values
in parentheses are the results on the data they were trained on, and hence are not directly comparable to the others. Methods in gray are used
with auxiliary utilization.

Methods Sintel Clean Sintel Final KITTI 2012 KITTI 2015

train AEE test AEE train AEE test AEE train AEE test AEE train AEE train Fl-all test Fl-all

DeepFlow [9] 2.66 5.38 3.57 7.21 4.48 5.8 10.63 26.52% 29.18%
EpicFlow [1] 2.27 4.12 3.56 6.29 3.09 3.8 9.27 27.18% 27.10%
Deep DiscreteFlow [18] – 3.86 – 5.73 – 3.4 – – 21.17%
Patch Matching [17] – 3.78 – 5.36 – 3.0 – – 19.44%
3DFlow [28] – 3.92 – 6.13 – – – – 26.19%
DCFlow+KF2 [27] (2.07) 3.65 (3.25) 5.07 – – – – –
FlowNetS [2] 4.50 7.42 5.45 8.43 8.26 – – – –
FlowNetS-ft [2] (3.66) 6.96 (4.44) 7.76 7.52 9.1 – – –
FlowNetC [2] 4.31 7.28 5.87 8.81 9.35 – – – –
FlowNetC-ft [2] (3.78) 6.85 (5.28) 8.51 8.79 – – – –
FlowNet2 [14] 2.02 3.96 3.54 6.02 4.01 – 10.08 29.99% –
FlowNet2-ft [14] (1.45) 4.16 (2.19) 5.74 (1.28) 1.8 (2.30) (8.61%) 11.48%
SPyNet [3] 4.12 6.69 5.57 8.43 9.12 – – – –
SPyNet-ft [3] (3.17) 6.64 (4.32) 8.36 (3.36) 4.1 – – 35.07%
LiteFlowNet [23] 2.48 – 4.04 – 4.00 – 10.39 28.50% –
LiteFlowNet-ft [23] (1.35) 4.54 (1.78) 5.38 (1.05) 1.6 (1.62) (5.58%) 9.38%
PWC-Net [4] 2.55 – 3.93 – 4.14 – 10.35 33.67% –
PWC-Net-ft [4] (2.02) 4.39 (2.08) 5.04 (1.45) 1.7 (2.16) (9.80%) 9.60%
PWC-Net+KF2 [27] (1.75) 3.75 (2.28) 4.98 – – – – –
STC-Flow (Ours) 2.41 4.25 3.60 5.56 4.20 3.7 10.18 32.23% 31.59%
STC-Flow-ft (Ours) (1.36) 3.52 (1.73) 4.87 (0.98) 1.5 (1.46) (5.43%) 7.99%

SelFlow-fta [26] (1.68) 3.74 (1.77) 4.26 (0.76) 1.5 (1.18) – 8.42%
PatchFlowb [20] (4.45) 7.7 (4.99) 7.98 3.34 4.0 6.91 21.82% 23.46%
IRR-PWC-ftb [25] (1.92) 3.84 (2.51) 4.58 – – (1.63) (5.32%) 7.65%
MaskFlownet-ftb [29] – 2.52 – 4.17 – 1.1 – – 6.11%
ScopeFlow-ftb [30] – 3.59 – 4.10 – 1.3 – – 6.82%
RAFT-ftc [31] (1.09) 2.77 (1.53) 3.61 – – (1.07) (3.90%) 6.30%

aSelFlow utilizes 7 frames as the input to estimate optical flow.
bPatchFlow, IRR-PWC and MaskFlownet utilize the occlusion supervision as the auxiliary of optical flow estimation.

cRAFT utilizes an update operator for multi-frame optical flow training.
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Fig. 12. Examples of predicted optical flow from different methods on Sintel and KITTI datasets. Our method achieves the better performance and preserves the details with fewer
artifacts. (Zoom in for details.)
Fig. 13. The performance about the average end-point error (AEE) in Sintel test Clean
pass and the model size of CNNs.

Table 4
Comparison of the runtime of different CNN methods (Inference on Intel Core i5 and
NVIDIA GTX 1080 Ti).

Methods No. of param. (M) Runtime (ms) Frame rate (fps)

FlowNetC [2] 39 38.8 26
FlowNet2 [14] 163 105.5 10
LiteFlowNet [23] 5.4 72.1 14
PWC-Net [4] 8.8 37.2 27
IRR-PWC-ft [25] 6.4 182.2 5.2
RAFT-ft [31] 5.3 106.7 9.4

STC-Flow (Ours) 9.0 45.5 22

MaskFlownet [29], and ScopeFlow [30] are utilized the occlusion
supervision branch as the auxiliary prediction, which promotes the
accuracy of the non-occluded optical flow prediction. SelFlow [26]
and RAFT [31] leverage multi-frame training strategies for more in-
formation complementation than two-frame scheme. SelFlow uses 7
frames to predict one flow map. RAFT uses an update operator for
multi-frame training, to deposit and update optical flow by using the
current estimation result, which is helpful to train the network from
consecutive frames.

We measure the running time of different CNN methods with Intel
Core i5 CPU and NVIDIA GTX 1080 Ti GPU. Timings are averaged
over 100 runs for images in Sintel of size 1024 × 436. As summarized
in Table 4, our method is more than 2 times faster than FlowNet2,
and 1.5 times faster than LiteFlowNet. Due to the calculation of con-
textual modules, our method is slower than PWC-Net. However, our
method models the global contextual information via these modules
for accurate optical flow estimation. Moreover, IRR and RAFT require
10
more running time, due to the extra occlusion estimation for IRR and
high-resolution feature used for RAFT, respectively.

5. Conclusion

To explore the motion context information for accurate optical
flow estimation, we propose a spatio-temporal context-aware network,
STC-Flow, for optical flow estimation. We propose three context mod-
ules in feature extraction, correlation, and optical flow reconstruction,
i.e. pyramidal spatial context (PSC) module, temporal context correlation
(TCC) module, and recurrent residual contextual upsampling (RRCU) mod-
ule, respectively. These three modules utilize contextual information
to deal with long-range dependencies and thus improve the overall
performance and maintain high-frequency details of optical flow. We
have validated the effectiveness of each component. Our proposed
scheme achieves the state-of-the-art performance without multi-frame
or additional information used.
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